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1. Introduction
Nowadays various kinds of maps and spatial data are getting available along the spread of GIS. When using these data on GIS, there are several cases that transformation of map shapes or reallocation of spatial data is necessary (Dey et al., 1999).

One case is when using spatial data which position accuracy is low. These data needs geometric correction to be utilized on GIS. Typical examples of low position accuracy spatial data are historical maps (Shimizu and Fuse, 2003). Historical maps have been noticed as materials which describe the urban structure of the past, and they have been utilized in urban and regional history studies. Recently anyone can browse historical maps freely by the use of information technologies. However, it is not easy to compare distorted historical maps with present maps and extract the change of urban structure such as street network and land use. But if the elimination of geometric distortion is possible, it would make the comparison between historical and present maps easier.
Another case is when using cartograms. Cartograms visualize the distribution of spatial data by transforming map shapes. Area cartograms represent regions’ data size by their areas on cartograms (Inoue and Shimizu, 2006), and distance cartograms represent proximities between points by distances between points on cartograms (Shimizu and Inoue, 2003). If the transformation of spatial data on cartograms is available, it would enhance the applicability of cartograms. For example, if spatial distribution of hospitals is transformed on population area cartograms, or in other words “equal population density map”, it could visualize the regional disparity of medical services. Or if map shapes are transformed over distance cartograms which visualize travel time between cities, it enables map views to understand the represented data easily.
As mentioned above, there are several cases when the map transformation to fit another map is required. If shape difference is small, the application of spatial interpolation tools implemented in GIS software can transform map. However, if the difference of map shape and configuration of control points is large, the map transformation is difficult, and the result of map transformation may twist or lap over. As a result, the transformed map becomes not understandable. Until now many methods such as rubber-sheet matching has proposed to solve this problem (e.g. White and Griffin, 1985; Doytsher, 2000).
In this study, we propose a simple method for one-to-one correspondence map transformation, i.e. no-twist and no-overlap map transformation. To be more precise, we propose a method to create a homeomorphic triangulated irregular network (TIN) from given control points on two maps. Once the homeomorphic TIN is created, the piecewise affine transformation by each triangle pair becomes the one-to-one correspondence map transformation.
2. Algorithm to create homeomorphic TIN
We propose a simple method to create a homeomorphic TIN from two different configurations of control points in this section.
Suppose there are two maps, a reference map (Figure 1(a)) and a target map (Figure 1(b)), and two control points M and N are placed on each map. Now try to create a homeomorphic TIN on both maps to make the one-to-one correspondence map transformation.
First construct the Delaunay triangulation on the reference map, and then create the same TIN on the target map. Since the Delaunay triangulation maximizes the minimum angle, the possibility of triangles’ overturn is relatively small on the condition that the configuration of control points on the target map is “similar” to that on the reference map. In this example, triangles AMN and BMN overturn on the target map (Figure 1(b)), since the difference in the configurations of control points between two maps are large. The overturn of triangles means that the affine transformation using this TIN is not one-to-one correspondence map transformation.
However, flips of triangle edges are able to dissolve the overturn of triangles in some cases. In this example, it is possible to create the homeomorphic TIN by the flip of edge BN and edge CM (Figure 2).
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(a) reference map
(b) target map
Figure 1 Construction of Delaunay triangulation on reference map
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(a) reference map
(b) target map
Figure 2 Creation of homeomorphic TINs by flip of edges
As described above, flip of edges can create a homeomorphic TIN in some cases. Then we propose a method to create a homeomorphic TIN by edge flip. The procedure of the proposed algorithm is as follows.
1. Construct the Delaunay triangulation using the configuration of control points on the reference map, and create the same TINs on the target map. 
2. Check the overturn of triangles on the target map. When there are any overturned triangles, check if the flip of their edges could reduce the total area of overturned triangles. If so, flip the edges and check if the overturn of triangles still exist.
3. If all overturned triangles have checked and it is impossible to reduce the total area of overturned triangles, finally output the TIN.

The proposed method is an analogy of the Delaunay triangulation by edge flips (Okabe et al., 2000). It is proved that the Delaunay triangulation can be created from any TINs by the iteration of edge flips. The edge flip rule to create the Delaunay triangulation is very simple; flip the edge when the minimum angle of triangles becomes larger. The edge flip procedure is possible to create a unique Delaunay triangulation, if no three points are on the same line and no four are on the same circle, for a two dimensional set of points.
However, it is not the case for the homeomorphic TIN creation problem. There are many counter-examples when edge flips do not output homeomorphic TINs. Moreover, since there are configurations of control points which are impossible to create homeomorphic TINs, it is unavoidable to delete some control points for the one-to-one correspondence map transformation. The proposed method would not be the best solution for creating homeomorphic TINs, but this method has some advantages in calculation time and is considered to be a practical method. Then we test its applicability through numerical experiments in the next section.
3. Evaluation of proposed method through numerical experiments
In this section, we evaluate the appropriateness and applicability of proposed method through numerical experiments.

3.1 Summary of numerical experiments
The procedures of numerical experiments are as follows: 
1. Allocate n control points randomly in a square one on a side (Configuration A).
2. Create another configuration of control points by moving each point randomly within a certain distance (=d) radius (Configuration B).
3. Create the Delaunay triangulation for the Configuration A and create the same TIN on the Configuration B. 
4. When there is any overturn of triangles on the Configuration B, flip the edges of overturned triangles if the edge flip could reduce the total area of overturned triangles.
For comparison purpose, calculate the minimum total area of overturned triangles. Create all TINs from the Configuration A, and search the minimum total area of overturned triangles. We call this procedure as the “all search method” subsequently.
In the numerical experiments, we record the total area of overturned triangles by the proposed method, the minimum total area of overturned triangles by the all search method, and the calculation time of two methods.
3.2 Results of numerical experiments
In this section, we show the result of numerical experiments and evaluate the applicability and effectiveness of proposed method.
3.2.1 Calculation time

Table 1 shows calculation times of the proposed method and the all search method. The calculation is done by CPU 1.5GHz computers, and the maximum displacement of control points d is 0.2. Calculation times are the average of 1,000 trials when the number of control points n is no more than 9, and the average of two trials when n is more than 9.
When n is small, there is no significant difference between the proposed method and the all search method. However, the calculation time of the all search method increases exponentially as n increases. As the all search method takes 50 minutes even when n = 12, it is clear that it does not have applicability. On the other hand, the proposed method could create a TIN in 11 seconds even when n = 1,000.
Table 1 Average calculation time (s)
	n
	2
	3
	4
	5
	6
	7
	8

	Proposed
	0.030
	0.028
	0.034
	0.029
	0.030
	0.035
	0.034

	All search
	0.045
	0.071
	0.10
	0.12
	0.33
	1.0
	6.0

	

	n
	9
	10
	11
	12
	13
	…
	1000

	Proposed
	0.034
	0.090
	0.10
	0.14
	0.12
	
	11

	All search
	18
	59
	226
	2919
	10123
	
	-


3.2.2 Total area of overturned triangles

Next, we evaluated if the proposed method could create a TIN which total area of overturned triangles is close to the minimum value calculated from the all search method.
Table 2 shows the ratio which the total area of overturned triangles by the proposed method equals to the minimum value calculated by the all search method. The number of control points, n, is from two to nine, and the maximum displacement of control points d is 0.1 and 0.2. The ratio shown in Table 2 is the result of 1,000 trials.
The ratio drops as n and d increases, however, it keeps relatively high value. There is a good chance that the proposed method outputs the minimum total area of overturned triangles.
Figure 3 shows the average of total area of overturned triangles in 1,000 trials when the maximum displacement d = 0.2. Figure 3 indicates that even the all search method could not create TINs without triangles’ overturn as the number of control points increases. Along with the increase of minimum value, the average of total area of overturned triangles calculated from proposed method increases, however, the disparity from the minimum value is rather small. 

Since it is not always possible to create a homeomorphic TIN from any given configuration of control points, it is necessary to delete some points from the control point list. When we apply the proposed method in the next section, we search the control point which is the vertex of the maximum inner angle of overturned triangles, and delete it one by one.

Considering the difference in calculation time, it could be said that the proposed method have applicability and effectiveness in creating a homeomorphic TIN on two maps.

Table 2 Ratio when proposed method outputs minimum total area of overturned triangles (%)
	n
	2
	3
	4
	5
	6
	7
	8
	9

	d = 0.1
	99.9
	99.6
	99.0
	98.0
	96.1
	95.1
	93.5
	89.7

	d = 0.2
	99.7
	98.7
	96.6
	93.5
	89.6
	83.8
	78.8
	72.0
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Figure 3 Average of total area of overturned triangles (d = 0.2)

4. Application

We introduce an application example of the proposed method in this section. We use a time-space map for the example. Time-space map is a kind of distance cartogram which visualizes travel times between points by distances between points on the map.
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(a) Configuration of major cities
(b) Links of railway network
Figure 4 Configuration of major cities and railway network (Map data: ESRI Japan)

[image: image8.emf]
Figure 5 Time-space map which represent travel time by rail in 1965 
* a gray point indicates that the control point has removed at the transformation.
Figure 4 (a) shows the configuration of 81 major cities in Japan, and Figure 4 (b) shows major railway network which consists of 109 links. Then Figure 5 is a time-space map which represents railway travel time in 1965 (Shimizu and Inoue, 2003). Figure 5 shows that the travel time between Tokyo and Osaka was shorten, since the rapid railway service between these cities opened in 1964.

Now we apply the proposed solution to these maps. A reference map is Figure 4 (a) and is going to be transformed to fit to Figure 5. Since the difference between distances on the geographical map and distances on the time-space map is quite large near the Shikoku Island, the deformation of map shape becomes too large. To reduce the unnecessary map shape deformation, we set the extra control points on the sea around the Shikoku Island. 

The proposed method outputs Figure 6. The proposed solution could not output a homeomorphic TIN without deleting a control point indicated a large gray point in Figure 5. However, it is possible to express the position of other 80 control points. 

It is confirmed that the proposed method is able to create a homeomorphic TIN and map transformation. Since the number of deleted control points is small, most of the information on the time-space map is kept during the map transformation.
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Figure 6 Time-space map which represent travel time by rail in 1965
5. Conclusion

In this study, we proposed a method to create a homeomorphic TIN from the given configurations of control points on two different maps for the purpose of one-to-one correspondence map transformation.

Through the numerical experiments, the following results have been shown; 
1. The proposed method is able to create a TIN which is close to homeomorphic TINs on two maps in a short calculation time.
2. The proposed solution is not always output homeomorphic TINs. However, originally it is not possible to create homeomorphic TINs from any given configurations of control points on two maps. The proposed method outputs a TIN which minimizes the total area of overturned triangles at most of times. Even if it does not coincide, the proposed method outputs a TIN which is close to the TIN which has minimum overturned triangles.
3. Since it is not possible to create a homeomorphic TIN from any given configurations of control points on two maps, it is necessary to remove some control points. Removing the control point which creates maximum angles in overturned triangles, it is easily and fast to create the homeomorphic TIN and enables to do the one-to-one correspondence map transformation.
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